Comparison of European TramTrain-Projects with the Kassel RegioTram

SINTROPERHER
Blackpool
September 22nd, 2010
Authors

Peter Rosskothen NVV
Axel Kuehn Independent Consultant

For contact details see last page.

Sources

As long as not further specified, all photographs used in this presentation are by Axel Kuehn and his copyright.

NVV related materials are all copyright of NVV.
The NVV presents himself
Land Hessen and Public Transport Authorities
The NVV presents himself

Settlement scheme

- City of Kassel
 (195,000 inhabitants)

- Municipalities
 (10 – 30,000 inhabitants)
Abstract

- Who is NVV?
- Why this study?
- Approach
- TramTrain-Definition
- Selected projects
- Rolling stock overview
- Selected parameters and indicators
- Results
- Conclusions for the Kassel RegioTram
- General Conclusions
Why this study?

- Idea: to create a benchmarking approach for Tram-Train projects …
- …to look beyond one’s own nose
- Position of the Kassel project compared to other projects
- Gain a more detailed look on vehicle procurement
- Collect ideas and draw conclusions for further development and improvements of our project
- Share experiences and ideas with related projects
Approach

- **Limited time and financial resources**
- In Stage One a **desktop research** is considered sufficient
- Selection of **appropriate projects**
- Still few projects in operation – therefore necessity to include also planned projects
- Selection of key **parameters and indicators**
- Focus on **vehicle procurement**
- **No claim** that selected projects and parameters are **exhaustive**
- Beware: some figures are uncertain/incomplete and need verification
- Study performed by Axel Kuehn, Light Rail Expert
TramTrain-Definition

- TramTrain still a very young genre, thus no binding international definition yet

- Basically one notices a German and a French “definition”:

 German: Mixed operation of light-rail and heavy rail vehicles on tram and railway infrastructure (normally paired with dual mode technology)

 French: Operation of light-rail vehicles with speeds higher then 70km/h (usually 100km/h)

- Important: The French definition does not limit TramTrain to track-sharing light rail / heavy rail and / or use of dual-mode technology! It includes also interurban fast tramways.
Selected projects

- Karlsruhe + Heilbronn (D)
- Saarbruecken (D)
- Chemnitz (D)
- Braunschweig (D)
- Aulnay-Bondy (F)
- Mulhouse (F)
- Nantes (F)
- Lyon (F)
- Alicante (E)
- Porto (P)
- Rijn-Gouwe-Lijn (NL)
- RandstadRail (NL)

14 Cities/Regions (including Kassel) from 5 European countries
40 Corridors/Single projects (eg Karlsruhe + Heilbronn 17 corridors!)
Kassel RegioTram (4 corridors)

Present Stage, 2007 – Dec 2012

- 4 lines, at least 1 train per hour
- 3 new stations
- Express service by “conventional” trains, 0.5–1 train per Hour
- Treysa line not part of review!
Kassel RegioTram (4 corridors)

Final Stage, Starting Dec 2012

- 3 lines, 2 trains per hour
- 2 additional stations
- Express service by “conventional” trains, 0.5–1 train per hour
Kassel RegioTram – the 4th corridor

Kassel – Hessisch Lichtenau

- A conversion project
- The predecessor of Kassel’s “real” TT-approach
- Characteristics of a “regional tramway” (vehicle, maximum speed etc)
- A very innovative approach to convert a freight railway route
Selected projects: Karlsruhe (15 corridors) + Heilbronn

- Starting point about 1960 with the linking of „Albtalbahn“ railway to tramway network
- TramTrain operation on DB main lines started from 1991
- Now about 600km TramTrain-network on DB-tracks, leased and own tracks

Source: AVG (updated)
Selected projects: Karlsruhe (15 corridors) + Heilbronn

- 122 +30 TT-vehicles
- Only system using middle-floor (55cm) entrance height
- Track-sharing both TT vs railway and TT vs low-floor tramway
- Saturation of city-centre corridor + high percentage of 75m trains have led into underground project!

- Estimated total costs 530 Mio € of which about 400 Mio € related to the tunnel by-pass! “Cheap and easy?”
Selected projects: Karlsruhe + Heilbronn (2 corridors)

- Scheme connected to AVG network via Bretten-Eppingen and operated by AVG
- East-West corridor Eppingen-Heilbronn (26km) and Heilbronn-Oehringen (27km) opened in two steps 2001 and 2004/2005
- North-South corridor planned; Southern extension currently uncertain

Source: www.stadtbahn-heilbronn.de
Selected projects: Saarbruecken (2 corridors)

- First section Saarbruecken-Sarreguemines (France) opened 1997; included 5km of new urban tramway and 14km railway
- Northern section still not completed – Riegelsberg opened 2009
- 28 vehicles (FLEXITY LINK, first low-floor TT-vehicle) ordered in 1995 and delivered in 1997/98 for the complete project – huge vehicle surplus for long period of time!
Selected projects: Chemnitz (3 corridors)

- Pilot project Chemnitz-Stollberg opened in late 2002 - in principle a “conversion” project.
- Electrification with 750 V DC
- Railway status kept but private infrastructure owner/manager
- 6 VARIOBAHN “tramway” vehicles used, maximum speed 70km/h
- Next phase includes “real” TramTrain operation with Diesel Hybrid TT-vehicles to Burgstädt and Hainichen with connection to urban network, 10 vehicles to be ordered in 2010

Source: Citybahn Chemnitz
Selected projects: Braunschweig (5 corridors)

- Several (long) un-electrified railway corridors (Uelzen 96 km!) linked to urban tramway network
- Planned opening: 2014?
- Special case: Existing tramway 1100mm gauge > 3-rail track
- New urban/tramway track in Salzgitter-Lebenstedt
- Estimated project costs 279 Mio € (2006)
- 30 Diesel hybrid vehicles required, future vehicle type unknown yet
Selected projects: Aulnay - Bondy (1 corridor)

- TramTrain „shuttle“ between RER-nodes, tangential sub-urban service in Greater Paris
- No connection to main line railways at either end – TT-operation completely separated
- Operated by SNCF, 6min frequency
- 25 kV AC electrification
- 8km length – 280,000 inhabitants in corridor (!)
- 120 Mio € costs
- 15 vehicles (Siemens AVANTO)

Source: www.ter-sncf.com (up, adapted), SNCF/Transilien (bottom)
Selected projects: Mulhouse (1 corridor)

- New urban tramway + add-on TT-corridor to Thann/Kruth; tramway opened 2006, TT will open late 2010 to Thann
- Connected to tramway network
- 22.5 km (Thann); 39.0 km (Kruth)
- 147 Mio € (Thann)
- 12 vehicles (AVANTO)
Selected projects: Nantes (2 corridors)

- Nantes-Chateaubriant corridor; re-opening of a 64km railway closed in 1980, operation start foreseen for 2012.
- Not connected to urban tramway, terminating in main railway station
- 200 Mio €
- 15 vehicles (DUALIS) – also for Clisson corridor (replacement for railway rolling stock).

Source: www.reouverture-nantes-chateaubriant.fr
Selected projects: Lyon (3 + 1 corridors)

- “L’Ouest Lyonnais“-project: Lyon-Sain Bel, Lyon-Brignais, Lyon-Lozanne
- Planned for opening 2011-2015 in steps
- Not connected to urban tramway
- 55km network
- 320 Mio €
- 34 vehicles (DUALIS), 24 so far ordered for Sain Bel + Brignais

Source: www.projet-ferroviaire-ouest-lyonnais.fr
Selected projects: Lyon (3 + 1 corridors)

- Rhonexpress (LESLYS) airport link; joint running with tramway to Meyzieu, but using different rolling stock with 100km/h maximum speed and infrastructure adapted for over-taking
- Operational since August 2010
- 23km (15km LEA tramway)
- 120 Mio € (40 Mio € public + 80 Mio € private – PPP!) + 172 Mio € for LEA tramway corridor
- 6 vehicles (TANGO EXPRESS)

Source:
www.lyon-en-lignes.org
(up, adapted)
www.tramtom.de (left)
Selected projects: Alicante (1 corridor)

- Scheme is combining local tramway and regional express train (TramTrain) features – also visible by use of different vehicles with 70 and 100km/h
- Operational since 2006 (TT)
- Denia (planned) 103km; Benidorm (operational) 43km
- ??? Mio €
- 9 vehicles (VOSSLOH 4100)
Selected projects: Porto (2 corridors)

- Opened in steps from 2002-2006 - total network 70km (yet without Ismai-Trofa 10km, under construction)

- Former narrow gauge railway corridors to Povoa de Varzim and Ismai (Trofa) converted to light rail (full double track!) and combined with new city tramway, 30 km / 26.5 km from Trindade station

- Electrification with 750 V DC

- 573 Mio € costs (only regional infrastructure outside core section including Trofa – total 43km)

- 30 vehicles (FLEXITY SWIFT, 100 km/h) in addition to tramway rolling stock

Source: Metro de Porto
Selected projects: Rijn-Gouwe-Lijn (1 corridor, East)

- Project combines urban tramway from in Leiden and to the coast (West) with TT-operation from Leiden to Alphen and Gouda (East)
- Planned opening 2015?
- Test operation with FLEXITY SWIFT (A32) vehicles from 2003-2009
- 28 km Leiden-Centre - Gouda
- Project costs: 335 Mio € (East part only, estimated)
- Future vehicle type unknown yet

Source: www.rijngouwelijn.nl
Selected projects: RandstadRail (2 corridors/lines)

- RandstadRail project combining light rail (TramTrain) connection The Hague-Zoetermeer with metro connection to Rotterdam

- Two light rail lines using tramway infrastructure in The Hague and running out to Zoetermeer on former heavy rail infrastructure; 27km / 29.5km

- Project costs: 1 Billion € (including metro)- approx. 500 Mio € for The Hague part (still including metro related costs)

- 50 vehicles (REGIO CITADIS)

Source: www.randstadrail.nl
Rolling stock overview

Suppliers and products:

- ALSTOM with DUALIS (and REGIO-CITADIS?)
- BOMBARDIER with FLEXITY SWIFT
- SIEMENS with AVANTO?
- VOSSLOH with 4100 vehicle (Alicante)
- STADLER with TANGO EXPRESS
- CAF with (type Cadiz?)
ALSTOM DUALIS (REGIO-CITADIS)

- Pays de la Loire (Nantes), 7 vehicles and Region Rhone-Alpes (Lyon), 24 vehicles, ordered 2007, 8 more for Nantes in 2009
- Nantes 750V DC / 25 kV AC, Lyon 1500V DC / 25kV AC
- 42m length, 2.65m width; seated capacity: 95
- Further options for Strasbourg and Ile-de-France, total frame of SNCF contract 200 vehicles

Source: Alstom
ALSTOM REGIO-CITADIS

- ordered 2002 by NVV Kassel, 28 vehicles
- 18 vehicles 750V DC / 15 kV AC, 10 vehicles 750V DC / Diesel
- 36.7m length, 2.65m width; seated capacity: 100
- ordered 2004 by HTM for RandstadRail, 50 vehicles 600V / 1500 V DC
- 36.7m length, 2.65m width; seated capacity: 84 (more doors)
BOMBARDIER FLEXITY SWIFT

- Porto (750V DC, 100km/h), 30 vehicles ordered 2006
- Karlsruhe (750V DC / 15kV AC, 100 km/h), 30 vehicles ordered 2009
- Porto vehicle low-floor 35cm, Karlsruhe vehicle medium-floor 55cm
- 37m length (BOStrab!), 2.65m width; seated capacity: 100

Source: Bombardier/KVV (right)
SIEMENS AVANTO

- Aulnay-Bondy (750V DC / 25kV AC, 100km/h), 15 vehicles ordered 2002
- Mulhouse (750V DC / 15kV AC, 100 km/h), 12 vehicles ordered 2006
- Low-floor vehicles
- 37m length, 2.65m width; seated capacity: 80
VOSSLOH 4100

- Alicante (750V DC, 100km/h), 9 vehicles ordered 2003
- Mallorca (750V DC, 100 km/h), 6 vehicles ordered 2009
- FEVE/Leon (750 V DC, 100km/h), 4 vehicles ordered 2010
- 37m length, 2.55m width; seated capacity: 92

Source: Vossloh
STADLER TANGO EXPRESS

- Rhonexpress Lyon (750V DC, 100km/h), 6 vehicles ordered 2006
- Low-floor
- 27m length, 2.55m width; seated capacity: 76
- Interesting feature: Double traction of 55m can use 40m platforms due to door configuration

Source: www.tramtom.de
TRAMTRAIN ROLLING STOCK COST TREND

TramTrain costs per order year [€/m²]

37m x 2.65m
≈100m²

Order year
TRAMWAY ROLLING STOCK COST TREND

Tramway costs per order year [€/m²]

Order year

37m x 2.65m
≈100m²
EN15227 impact on TramTrain

- Original TramTrain idea (Karlsruhe > LNT-regulations) has been to compensate lower passive safety by higher active safety (tramway braking!)

- This lead to acceptance of 600kN crashworthiness for TT-vehicles in mixed railway operation (with operational limitations: max 95km/h etc)

- Railway: 1500kN (UIC) Tramway: 200-400kN

- No general approval of TT-vehicles in other countries, case-based approach! Safety has to be demonstrated for each system/line!

- SAFETRAIN and SAFETRAM EU-projects led into a new European standard regarding crashworthiness of railway vehicles > EN15227

- Crash scenarios!

- Depending on country specific exemptions new orders have to respect the new standard!
EN15227 impact on TramTrain

Crashworthiness of Rail Vehicles

Passive safety basic elements

European railway vehicle categories (prEN 15227, Table 1)

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Examples of vehicle types</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-I</td>
<td>Vehicles designed to operate on TEN routes, international, national and regional networks (which have level crossings)</td>
<td>Locomotives, coaches & fixed units</td>
</tr>
<tr>
<td>C-II</td>
<td>Urban vehicles designed to operate only on a dedicated railway infrastructure, with no interface with road traffic</td>
<td>Metro vehicles</td>
</tr>
<tr>
<td>C-III</td>
<td>Light rail vehicles designed to operate on urban or regional networks, in track-sharing operation, and interfacing with road traffic</td>
<td>Tram trains, periurban tram</td>
</tr>
<tr>
<td>C-IV</td>
<td>Light rail vehicles designed to operate on dedicated urban networks interfacing with road traffic</td>
<td>Tramway vehicles</td>
</tr>
</tbody>
</table>

Source: DB
EN15227 impact on TramTrain

Crashworthiness of Rail Vehicles

Passive safety basic elements

European railway design collision scenarios outline (prEN 15227, Table 2)

<table>
<thead>
<tr>
<th>Design collision scenario</th>
<th>Collision obstacle</th>
<th>Operational characteristics of requirement</th>
<th>Collision Speed - km/h</th>
<th>Collision partner and conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C-I</td>
<td>C-II</td>
</tr>
<tr>
<td>1</td>
<td>Identical train unit</td>
<td>All systems</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>80-tons wagon</td>
<td>Mixed traffic with vehicles equipped with side buffers</td>
<td>36</td>
<td>Na</td>
</tr>
<tr>
<td>3</td>
<td>120-tons regional train</td>
<td>Mixed traffic with vehicles with a central coupler</td>
<td>na</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15-tons deformable obstacle</td>
<td>TEN & similar operation with level crossings $V_{le} \leq 110$</td>
<td>na</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Small, low obstacle</td>
<td>Obstacle deflector requirements to be achieved</td>
<td>See table 3</td>
<td>See table 3</td>
</tr>
</tbody>
</table>

Source: DB
EN15227 impact on TramTrain

- For a Category I heavy rail vehicle fulfilment of the crash scenarios means a crashworthiness of about 3000kN compared to 1500kN requested before!

- Future TT-vehicles will likely need to get to 800-1000kN?

- Older TT-rolling stock, i.e. the REGIO CITADIS, requires for new orders heavy re-engineering and will no more be available “as is”.

- Even new DUALIS only partial fulfilment (exemptions!)

- Further cost increases to be expected!
Selected parameters and indicators

- Evaluation and comparison based on radial lines / corridors, thus from city centre to region (diametrical lines cut in two!)

- Five groups of parameters / indicators:

 General corridor description (length, number of stops, average stop distance, railway share, electrification, connection to urban network)

 Operational features (mixed operation with railway/tramway, travel time to city centre, average speed, operation times weekdays, maximum frequencies)

 Rolling stock features (type, order year, number, dimensions, speed, motorization, crashworthiness, capacity, double/multiple traction)

 Demand features (population in corridor without main city, passenger numbers before/after respectively before/planned)

 Cost features (infrastructure, rolling stock and operation)
Results: Operational Overview

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mixed operation with railway</th>
<th>Mixed operation with tramway</th>
<th>Connection to city/tramway network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlsruhe Marktplatz-Stutenau/Spöck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Rheinstetten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Bad Herrenalb</td>
<td></td>
<td>some freight</td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Ilmenau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Hochstetten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Rastatt-Freudenstadt Hbf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Rastatt-Baden-Bühl (Achern)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Brettten (Eppingen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Würth Badepark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Porzheim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Porzheim-Mühlacker-Bietigheim/8issingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Hbf-Bruchsal-Menzingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Hbf-Bruchsal-Odenheim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruchsal-Mühlacker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Heilbronn Rathaus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Marktplatz-Heilbronn Rathaus (Express)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlsruhe Hbf-Heilbronn Rathaus (Sprinter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heilbronn Rathaus-Schwaigern (Epptingen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heilbronn Rathaus-Weinsberg-Öhringen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saarbrücken Hbf-Sarreguemines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saarbrücken Hbf-Riegel/Güchenbach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saarbrücken Hbf-Lebach Bf</td>
<td></td>
<td>freight?</td>
<td></td>
</tr>
<tr>
<td>Kassel Königsplatz-Hessisch Lichtenau</td>
<td></td>
<td>possible</td>
<td></td>
</tr>
<tr>
<td>Kassel Königsplatz-Wolfgang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kassel Königsplatz-Velten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kassel Rathaus-Holgersmar (Warburg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemnitz Hbf-Stolberg</td>
<td></td>
<td>possible</td>
<td></td>
</tr>
<tr>
<td>Chemnitz Hbf-Hainichen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemnitz Hbf-Burgstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad Harzburg - Braunschweig Nord Bf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifhorn (Triangel) - Braunschweig Nord Bf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfenbüttel (Schöppenstedt) - Braunschweig Nord Bf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salzgitter - Braunschweig Nord Bf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goslar - Braunschweig Nord Bf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nantes-Crison</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nantes-Chateaubriant</td>
<td></td>
<td>very limited</td>
<td></td>
</tr>
<tr>
<td>Mulhouse-Thann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulhouse-Thann-Kruth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulnay-Bondy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon Part Dieu - Satolas Airport (Randstadrail)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon-Sain Bel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon-Brignais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon-Lozanne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto Trindade-Povo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto Trindade-Povo (Express)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto-Trindade-Trofa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicante Luceros-Benidorm (Express)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicante Mercado-Denia (Express)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicante Luceros-Venta Lanuza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Hague/Loosduinen-Zoetermeer Centrum-West (Randstadrail)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Hague/De Uithof-Zoetermeer Javalaan (Randstadrail)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiden-Alphen-Gouda (RGL East)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Operational Parameters
Share of railway use (km Railway/km tramway)
Results: Corridor Description
Length of radial corridors / routes
Results: Route Parameters
Average stop distance
Results: Parameters of Level of Service

Average corridor / service speed
Results: Level of service parameters
Travel time to centre [min]
Results: Level of service parameters
Operation time per day
Results: Level of Service parameters

Maximum frequency / trains per hour and direction

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>10</td>
</tr>
<tr>
<td>Munich</td>
<td>8</td>
</tr>
<tr>
<td>London</td>
<td>6</td>
</tr>
<tr>
<td>Paris</td>
<td>4</td>
</tr>
<tr>
<td>Rome</td>
<td>2</td>
</tr>
<tr>
<td>Tokyo</td>
<td>1</td>
</tr>
<tr>
<td>Sydney</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph showing frequency of trains per hour and direction across various cities.](image)
Results: Potential demand indicators
Population / inhabitants per route-km
Results: Infrastructure Costs (1)

- Difficult comparison – projects are very different …
- Rather expensive projects (Porto, Randstad Rail)
- Rather cheap projects (Kassel, Chemnitz)
- Main distinction to be made between projects that rely on existing urban or railway infrastructure …
- … and those that need to build an urban tramway corridor (Saarbruecken, Mulhouse, Heilbronn) or refurbish railway infrastructure (Nantes, Porto)
- Topic should be considered more deeply
Results: Infrastructure Costs (2)

As an Example: Heilbronn

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eppingen–Heilbronn Hbf</td>
<td>24,7</td>
<td>58,9</td>
<td>2,4</td>
</tr>
<tr>
<td>Innenstadt Heilbronn West–Ost</td>
<td>3,1</td>
<td>53,9</td>
<td>17,4</td>
</tr>
<tr>
<td>Heilbronn–Ohringen</td>
<td>26,8</td>
<td>79,0</td>
<td>2,9</td>
</tr>
<tr>
<td>Zaberfeld–Lauffen</td>
<td>17,5</td>
<td>33,6</td>
<td>1,9</td>
</tr>
<tr>
<td>Lauffen–Heilbronn</td>
<td>13,0</td>
<td>3,7</td>
<td>0,3</td>
</tr>
<tr>
<td>HN Harmonie–Einschleifung Neckarsulm</td>
<td>4,7</td>
<td>53,7</td>
<td>11,4</td>
</tr>
<tr>
<td>Neckarsulm Hbf–Sinsheim/Neckarelz</td>
<td>49,4</td>
<td>56,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Gesamtnetz</td>
<td>139,2</td>
<td>339,7</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Source: Naumann / Stadtverkehr 10/04
Summary and findings for the Kassel RegioTram (1)

- The Kassel Project combines the typical advantages of the Tram-Train approach:
 - high average velocities
 - Improved accessibility of regional settlement areas by new stations
 - Improved level of service (from Dec 2012)
- A well designed system that yielded remarkable increases in transport demand since 2007 (+60%), …
- … and we hope for another push in passenger demand introducing a clear 30 minutes interval in Dec 2012
- …yet, compared to other projects the indicators of potential demand are in the lower third → Kassel has to get the most of the potential demand (by line extensions in Kassel city and region, marketing)
Summary and findings for the Kassel RegioTram (2)

- The Kassel system was deliberately confined to a 30/40 min – isochrone
- i.e. most of the passengers have a trip length of less than 30 minutes
- The Kassel TT-system requires a cooperation with „conventional“ trains → prerequisite for exhausting the potential demand
- Chances of expansion are limited → hardly any chance to re-order Kassel RegioCitadis type
- additional vehicle procurement depends on realization of related projects (e.g. Braunschweig) → different vehicle types
- New vehicle types will be heavier → problems in the tramway network
Summary and findings for the Kassel RegioTram (3)

- The Kassel Project profited from the early 2000s enthusiasm of planning authorities and vehicle manufacturers
- Comparatively low vehicle procurement costs
- But: TT is not a rationalization project → operation costs are above those of conventional railway lines
- Any opportunity to reduce operation costs has to be taken
Summary and findings – Vehicle procurement (1)

- Rolling stock suppliers are no more eager to win reference projects by low offers as in the early 2000s
- The TramTrain vehicle market now is strongly influenced by the effects of the new EN15227 crash-standard
- Considerable price gap between “conventional” light rail and TT-vehicles (2010: 48,000 €/m² - 36,000 €/m² --- 2002: 38,000 €/m² - 28,000 €/m²)
- Some projects in Spain and France yielded extremely high procurement prices due to low vehicle numbers
- Only an order size of more than 30 vehicles ensures a reasonable price level → but most TT-projects suffer from low procurement numbers
Summary and findings – Vehicle procurement (2)

- The idea of Diesel-TT finds hardly any follower (Aarhus and Braunschweig now being re-considered)

- Indications for further vehicle cost increases compared to standard AC/DC TT-vehicles

- The **twofold price gap** enforces for those projects either a
 - project resizing or
 - a shift to conventional train service or
 - “one system” light rail service
General summary and findings (1)

- the TT-approach offers a variety of light rail solutions otherwise not possible, ...

- ... often customized solutions, some are very expensive

- ... often starting as a supplement to existing tramway schemes

- TT-approach mainly to be found in minor/medium sized conurbations, in some cases as tangential connections in large agglomerations (Aulnay-Bondy, Randstad)

- In most cases TT is a means to extend the accessibility of minor/medium sized conurbations → enhancing the competitiveness of regions

- Corridors / lines beyond the 30 Minutes Isochrone → may raise comfort issues
General Summary and Findings (2)

- The Karlsruhe/Heilbronn TT-network is by far the biggest system, showing a variety of operational combinations (i.e. stop-/express-TT, creative frequency types) and procurement features (i.e. lease of infrastructure).

- The Karlsruhe/Heilbronn TT-network is for many lines beyond the 30 Minutes Isochrone.

- It is above the “critical size” needed to yield economically feasible vehicle procurement prices.

- The most rapid development to be found in France → partly due to municipal decision and financing autonomy.

- … but not yet clear whether the TT-approach will leave its niche.
Contacts

- Peter Rosskothen
 Nordhessischer VerkehrsVerbund (NVV)
 Rainer-Dierichs-Platz 1
 34117 Kassel
 e-mail: peter.rosskothen@nvv.de

- Axel Kuehn
 Public Transport Expert / Independent Consultant
 Karlstraße 127
 76137 Karlsruhe
 e-mail: kuehn.axel@web.de